Extensive degradation of the heterocyclic system in the reaction of 1,2,4-triazolo[5,1-c]triazin-7(4H)-ones with resorcinol and its derivatives

Dmitry N. Kojevnikov,*a Vladimir L. Rusinov, Eugeny N. Ulomski, Oleg N. Chupakhin and Hans Neunhoeffer

^a Ural State Technical University, 620002 Ekaterinburg, Russian Federation. Fax: +7 343 244 1624

 $2-R^1-1,2,4$ -triazolo[5,1-c]triazin-7(4H)-ones react with resorcinols in trifluoroacetic acid yielding $5-R^2-6$ -hydroxy-3-($5'-R^2-2',4'$ -dihydroxyphenyl)benzo[b]furan-2(3H)-one. The reaction with resorcinol ether gave 2,2-bis(2',4'-dimethoxyphenyl)acetic acid.

It has been established that reactions of 6-nitrotriazolo-[5,1-c]triazin-7(4H)-ones with N-, S- and O-nucleophiles or hydrogen halides usually lead to substitution of the nitro group with retention of the bicyclic system. However, some O-nucleophiles, such as water and the hydroxyl ion, cause opening of the 1,2,4-triazine ring accompanied by elimination of the C(7)-atom. In particular, the hydrolysis of 6-nitro-azolotriazines was found to give triazolylhydrazones of nitroformaldehyde. Also, elimination of the N(5)–C(6)–C(7)

These results allow one to suggest the following reaction mechanism (Schemes 1 and 2). The triazolotriazinone 1 is protonated in trifluoroacetic acid at the N(5)-position, yielding cation 5. In this form triazolotriazine becomes very susceptible to nucleophilic attack. At the same time, the adduct 6 formed can also be protonated. The aliphatic atom N(5) in the intermediate 6 is more basic than it is in 5. Therefore, the formation of the addition product 8 proceeds faster than the formation of the adduct 6. This can explain the

Scheme 1

fragment and the formation of 5-N-alkylaminoazoles have been observed in the reaction of 4-alkyl-6-nitroazolo[5,1-c]triazinones with hydrazine. 1

We have studied the reaction of 2-R-1,2,4-triazolo[5,1-c]triazin-7(4H)-ones **1** with polyphenols and have found that an unexpected ring-opening of the 1,2,4-triazine system occurred. In the course of the reaction of **1** with resorcinol or its derivatives in trifluoroacetic acid the heterocyclic system loses two atoms, yielding the 5-R²-6-hydroxy-3-(5'-R²-2',4'-dihydroxyphenyl)benzo[b]furan-2(3H)-ones **2**. The second product of this reaction is 5-R¹-3-hydrazinotriazole **3**.

In contrast to the adduct formation in the reaction of 3-aryl-1,2,4-triazin-5(2*H*)-ones with phenols,³ the monoaddition of resorcinol to 1,2,4-triazolo[5,1-*c*]triazin-7(4*H*)-ones 1 has not been observed.

4-n-Hexylresorcinol was found to react in a similar manner to resorcinol, thus indicating that the presence of a long alkyl group does not result in steric hindrance in this reaction.

Interaction of the triazinones 1 with 1,3-dimethoxybenzene under the same conditions gave 2,2-bis(2',4'-dimethoxypheny-1)acetic acid 4. ¹H NMR spectral data† for the compounds 2 and 4 confirm their structures, also the lactone 2a was found to be identical to one obtained by straightforward synthesis from resorcinol and glyoxylic acid.⁴

absence of 6-(resorcyl-6')-5,6-dihydro-1,2,4-triazolo[5,1-c] triazin-7(4H)-one **6** in the reaction mixture.

The 5-R¹-hydrazino-1,2,4-triazole **3** was identified as the hydrazine of *ortho*-nitrobenzaldehyde by TLS.

All new compounds 2a-c and 4 gave satisfactory analytical and spectral data.

Compound **2a**: mp 280 °C; ¹H NMR (300 MHz, [2 H₆]DMSO) δ 4.9 [s, 1H,H(3)], 6.2–7.0 (m, 6H, aromatic protons), 9.3 (s, 1H, OH), 9.5 (s, 1H, OH), 9.7 (s, 1H, OH); m/z (%) 258 (100) [M $^{+}$].

2b: mp 121–122 °C; ¹H NMR (80 MHz, [²H₆]DMSO) δ 1.10–1.70 (m, 26H, 2C₆H₁₃), 2.55 (s, 3H, SCH₃), 4.95 [s, 1H, H(3)], 6.00–7.00 (m, 4H, aromatic protons), 9.30 (s, 1H, OH), 9.45 (s, 1H, OH), 9.70 (s, 1H, OH).

4: mp 147 °C; ¹H NMR (300 MHz, [²H₆]DMSO) δ 3.79 (s, 12H, 4 OCH₃), 4.85 (s, 1H, OH), 5.46 [s, 1H, H(2)], 6.42 [dd, 2H, ³J = 8.4 Hz, ⁴J = 2.4 Hz, H(5')], 6.48 [d, 2H, ⁴J = 2.4 Hz, H(4')], 6.97 [d, 2H, ³J = 8.4 Hz, 2 H(6')].

^b Institute of Organic Chemistry, Technische Hochschule Darmstadt, 64287 Darmstadt, Germany. Fax: +49 615 116 3574

[†] General experimental procedure. 5 mmol of 2-R-1,2,4-triazolo[5,1-c]triazin-7(4H)-ones and 10 mmol of polyphenol or its ether were dissolved in 5 ml of trifluoroacetic acid and the reaction mixture was kept overnight at room temperature. The solvent was then evaporated in vacuo and the residue was recrystallized from ethanol.

Scheme 2

The research described in this publication was made possible by a grant no. $1/68\ 782$ from the Volkswagen Foundation.

References

- 1 V. L. Rusinov, E. N. Ulomski, O. N. Chupakhin, A. U. Petrov and E. A. Sharonov, Khim. Geterotsikl. Soedin., 1989, 253 [Chem. Heterocycl. Compd. (Engl. Transl.), 1989, 25, 209].

 V. L. Rusinov, E. N. Ulomski, D. N. Kojevnikov,
- O. N. Chupakhin and G. G. Alexandrov, Zh. Org. Khim., in press (in Russian).
- 3 V. L. Rusinov, D. G. Beresnev, G. L. Rusinov, O. N. Chupakhin and H. Neunhoeffer, Symposium on Organic Chemistry, St Petersburg, 1995, p. 248.
 4 H. Auterhoff and I. Philippi, Archiv des Pharmazie, 1976, 409.

Received: Moscow, 5th December 1995 Cambridge, 6th February 1996; Com. 5/08178E